Positive and completely positive cones and Z-transformations

نویسندگان

  • M. Seetharama Gowda
  • M. SEETHARAMA GOWDA
چکیده

A well-known result of Lyapunov on continuous linear systems asserts that a real square matrix A is positive stable if and only if for some symmetric positive definite matrix X, AX + XA is also positive definite. A recent result of Moldovan-Gowda says that a Z-matrix A is positive stable if and only if for some symmetric strictly copositive matrix X, AX + XA is also strictly copositive. In this paper, these results are unified/extended by replacing R and R + by a closed convex cone C satisfying C−C = R. This is achieved by relating the Z-property of a matrix on this cone with the Z-property of the corresponding Lyapunov transformation LA(X) := AX+XA T on the completely positive cone of C and the Z-property of L AT on the copositive cone of C in S (the space of all real n × n symmetric matrices). A similar analysis is carried out for the Stein transformation SA(X) = X − AXA T .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Z-transformations on proper and symmetric cones Z-transformations

Motivated by the similarities between the properties of Z-matrices on Rn + and Lyapunov and Stein transformations on the semidefinite cone S+, we introduce and study Z-transformations on proper cones. We show that many properties of Z-matrices extend to Z-transformations. We describe the diagonal stability of such a transformation on a symmetric cone by means of quadratic representations. Final...

متن کامل

Geometry of the Copositive and Completely Positive Cones

The copositive cone, and its dual the completely positive cone, have useful applications in optimisation, however telling if a general matrix is in the copositive cone is a co-NP-complete problem. In this paper we analyse some of the geometry of these cones. We discuss a way of representing all the maximal faces of the copositive cone along with a simple equation for the dimension of each one. ...

متن کامل

On the Non-homogeneity of Completely Positive Cones

For a closed cone C in Rn, the completely positive cone of C is the convex cone K in Sn generated by {uuT : u ∈ C}. Completely positive cones arise, for example, in the conic LP reformulation of a nonconvex quadratic minimization problem over an arbitrary set with linear and binary constraints. Motivated by the useful and desirable properties of the nonnegative orthant and the positive semidefi...

متن کامل

On p-semilinear transformations

In this paper, we introduce $p$-semilinear transformations for linear algebras over a field ${bf F}$ of positive characteristic $p$, discuss initially the elementary properties of $p$-semilinear transformations, make use of it to give some characterizations of linear algebras over a field ${bf F}$ of positive characteristic $p$. Moreover, we find a one-to-one correspondence between $p$-semiline...

متن کامل

Positive and Z-operators on closed convex cones

Let K be a closed convex cone with dual K∗ in a finite-dimensional real Hilbert space V . A positive operator on K is a linear operator L on V such that L (K) ⊆ K. Positive operators generalize the nonnegative matrices and are essential to the Perron-Frobenius theory. We say that L is a Z-operator on K if 〈L (x), s〉 ≤ 0 for all (x, s) ∈ K ×K such that 〈x, s〉 = 0. The Z-operators are generalizat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017